Prediction of NO3-N losses with subsurface drainage water from manured and UAN-fertilized plots using GLEAMS
نویسندگان
چکیده
Excessive application of swine manure to a field over long durations can increase nitrate-nitrogen (NO 3 -N) leaching as a result of accumulation of more nutrients in the root zone than the subsequent crops may need. The objective of this study was to use the GLEAMS (V.2.1) model to compare measured versus simulated effects of swine manure application with urea-ammonium-nitrate (UAN) on subsurface drain water quality from beneath long-term corn (Zea mays L.) and soybean (Glycine max L.) plots. Four years (1993-1996) of field data from an Iowa site were used for model calibration and validation. The SCS curve number and effective rooting depth were adjusted to minimize the difference between simulated percolation below the root zone and measured subsurface drain flows. Model predictions of percolation water below the root zone followed the pattern of measured drain flow data, giving an average difference of 10%, and –5% between predicted and measured values for manured and UAN-fertilized plots, respectively, for four years from 1993 to 1996. Model simulations for overall NO 3 -N losses with percolation water were comparable to measured NO 3 -N losses with subsurface drain water giving an average difference of 20% for manured plots. The model overpredicted NO 3 -N losses, particularly for soybean on plots, which received manure in the previous year. Predicted NO 3 -N losses with subsurface drainage from fertilized plots were much lower than measured values with an average difference of –32%. The best fit line with zero intercept showed correlation coefficients of 0.73 and 0.66 between monthly predicted and measured NO 3 -N losses with subsurface drain flows for manured and UAN-fertilized plots for four years from 1993 to 1996, respectively. The results of the study show that the N-transformation processes and the associated rate factors based on soil temperature and soil water levels may need to be refined for consistent simulation of NO 3 -N losses with subsurface drainage water when fertilized with either swine manure or UAN for corn production.
منابع مشابه
Nitrate, phosphate, and ammonium loads at subsurface drains: agroecosystems and nitrogen management.
Artificial subsurface drainage in cropland creates pathways for nutrient movement into surface water; quantification of the relative impacts of common and theoretically improved management systems on these nutrient losses remains incomplete. This study was conducted to assess diverse management effects on long-term patterns (1998-2006) of NO, NH, and PO loads (). We monitored water flow and nut...
متن کاملEffects of Laying Hen Manure Application Rate on Water Quality
Excessive use of animal manure on agricultural lands can impact the quality of surface and groundwater resources. A three–year study (1998–2000) was conducted on nine 0.4–ha plots and on six 2.1–m 2 lysimeters to investigate the effect of two nitrogen (N) application rates from laying hen manure and one N application rate from urea ammonium nitrate (UAN) fertilizer on surface and groundwater qu...
متن کاملEffects of liquid swine manure applications on NO3–N leaching losses to subsurface drainage water from loamy soils in Iowa
Long-term applications of organic or inorganic sources of N to croplands can increase the leaching potential of nitrate– nitrogen (NO3–N) for soils underlain by subsurface drainage ‘‘tile’’ network. A field study was conducted for 6 years (1993– 1998) to determine the effects of liquid swine manure and urea ammonium nitrate (UAN) solution fertilizer applications on NO3–N concentrations and NO3–...
متن کاملRZWQM simulation of nitrate concentrations in subsurface drainage from manured plots
The Root Zone Water Quality Model (RZWQM, V 3.25) was used to simulate the effect of swine manure applications on nitrate-nitrogen (NO3-N) concentrations in subsurface drain water from continuous corn for Iowa soils. Measured values of subsurface drain flow, NO3-N concentrations in drainage water, and residual NO3-N in the soil profile from three chisel plow plots were available for the growing...
متن کاملWater Quality in Walnut Creek Watershed: Nitrate-Nitrogen in Soils, Subsurface Drainage Water, and Shallow Groundwater
Nonpoint source contamination of surface and groundwater resources with nitrate-N (NO3-N) has been linked to agriculture across the midwestern USA. A 4-yr study was conducted to assess the extent of NO3-N leaching in a central Iowa field. Water flow rate was monitored continuously and data were stored on an internal datalogger. Water samples for chemical analysis were collected weekly provided ...
متن کامل